Asymptotic Analysis of Hoppe Trees

نویسندگان

  • Kevin Leckey
  • Ralph Neininger
چکیده

We introduce and analyze a random tree model associated to Hoppe’s urn. The tree is built successively by adding nodes to the existing tree when starting with the single root node. In each step a node is added to the tree as a child of an existing node where these parent nodes are chosen randomly with probabilities proportional to their weights. The root node has weight θ > 0, a given fixed parameter, all other nodes have weight 1. This resembles the stochastic dynamic of Hoppe’s urn. For θ = 1 the resulting tree is the well-studied random recursive tree. We analyze the height, internal path length and number of leaves of the Hoppe tree with n nodes as well as the depth of the last inserted node asymptotically as n → ∞. Mainly expectations, variances and asymptotic distributions of these parameters are derived. AMS 2010 subject classifications. Primary 60F05, 60C05; secondary 60G42, 68R05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

Asymptotic Cost of Cutting Down Random Free Trees

In this work, we calculate the limit distribution of the total cost incurred by splitting a tree selected at random from the set of all finite free trees. This total cost is considered to be an additive functional induced by a toll equal to the square of the size of tree. The main tools used are the recent results connecting the asymptotics of generating functions with the asymptotics of...

متن کامل

On the Average Height of b-Balanced Ordered Trees

An ordered tree with height h is b-balanced if all its leaves have a level l with h − b <= l <= h, where at least one leaf has a level equal to h − b. For large n, we shall compute asymptotic equivalents to the number of all b-balanced ordered trees with n nodes and of all such trees with height h. Furthermore, assuming that all b-balanced ordered trees with n nodes are equally likely, we shall...

متن کامل

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

The Asymptotic Groundstate of SU(3) Matrix Theory

The asymptotic form of a SU(3) matrix theory groundstate is found by showing that a recent ansatz for a supersymmetric wavefunction is non-trivial (i.e. non-zero).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Applied Probability

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2013